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Surface-state-induced second-harmonic generation

C D Hu
Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China

Received 17 April 1996

Abstract. We propose a simple and intuitively clear method for analysing the second-harmonic
generation induced by surface states. The two-band model is used to calculate the wave
functions and Green’s function so that the second-harmonic current density and polarization
can be evaluated. Assuming that the polarization is concentrated on the surface, we calculated
the reflection intensity of the second-harmonic light. We apply our formalism to the L-gap
surface states on the silver (110) surface and obtain results that agree reasonably well with
experiments.

1. Introduction

Second-harmonic generation is not only a very useful tool for surface diagnostics, but is
itself a physically interesting phenomenon [1]. In the past few years, there have been several
experimental works on the surface-state-related second-harmonic generation [2–4] on noble-
metal surfaces. By analysing the relationship between the second-harmonic intensity and
frequency, incident angle and polarization, one is able to calculate accurately the energy, and
dispersion, and find the symmetry of the surface states involved. Other information such as
the energy gap where the surface states are located, surface characterization and dielectric
function may also be obtained. Therefore, it is desirable to have a physical understanding
and quantitative analysis of this topic. The second-harmonic generation on jellium surfaces
had been studied thoroughly [5–8]. But, for a system with energy-gap surface states, there
is no comparable work. This article is an attempt to fill this void.

One of the difficulties of analysing the problem of the second-harmonic generation is
that there are infinitely many intermediate states to account for. Usually one can choose
a set of states which provide the main contribution—for an example, resonant states. For
a system with an energy gap this is not trivial because sometimes the energy range of
resonance falls into the gap. It is not clear that the states near the band edge (and hence
those closest to resonance) give the dominant contribution. The states further away, though
they contribute less individually, are greater in number. The entire band has to be taken
into account; at least convergence has to be reached. As we shall see, the Green’s function
method can overcome this difficulty. However, we do not intend to consider the many-
electron effect which was treated in references [5–8]. The future challenge is to incorporate
both this and the band-gap effect into one formalism. We are working on this subject.

In section 2, we derive the form of the second-harmonic current density in terms of the
Green’s function. In section 3, we use the two-band model to compute the wave functions
of the surface states and the Green’s function. The latter is a modified version of that in
Mahan’s photoemission theory [9]. Since the energy gap is the main feature in our system, it
has to be incorporated in our calculation of the Green’s function. We did not attempt to use
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a more sophisticated band-structure method. The two-band model [10] gives a reasonably
good description of the energy gap and surface states and it is intuitively simple. Thus it is
easier to introduce the many-body effect, which is the subject of our future work. Also, the
present approach can be readily extended to more sophisticated methods such as the KKR
method. In section 4, we compute the second-harmonic reflectance using the model of Sipe
and co-workers [11] and a simple dielectric function which fits the experimental data. The
silver L gap on the (110) surface is used as an example. We give conclusions in section 5.

2. Formalism

We derive the form of the second-harmonic current density in this section. It is similar to
that in Bower’s approach [12] and had been derived before [13, 14]. The Hamiltonian of
the electron–EM-wave interaction is

Hint =
∫

d3r (h1 + h2) (1)

where

h1 = −e

2mc
ψ†(r)

[
p · A(r, t) + A(r, t) · p

]
ψ(r) (2)

and

h2 = e2

2mc2
ψ̂†

(r)A2(r, t)ψ̂(r). (3)

Here ψ̂(r) is the electron field operator, the light inside the crystal is represented by the
vector potentialA(r, t) and

A(r, t) = A0ei(u·r−ωt) (4)

whereu is the wave vector. We have used gauge where

E = −1

c

∂A

∂t
. (5)

Using the time-dependent perturbation theory we found that the current density to the
second order inA0 is

J(r, t) = J1(r, t) + J2(r, t) + J3(r, t) (6)

with

J1(r, t) = −
∑

n

∫
d3r′

{
[h1(r

′, t)]0n[JA(r)]n0

h̄ω + En0 + iη
− [JA(r)]0n[h1(r

′, t)]n0

h̄ω − En0 + iη

}
(7)

J2(r, t) = −
∑

n

∫
d3r′

{
[h2(r

′, t)]0n[Jp(r)]n0

2h̄ω + En0 + iη
− [Jp(r)]0n[h2(r

′, t)]n0

2h̄ω − En0 + iη

}
(8)

and

J3(r, t) = −
∑
m,n

∫
d3r′

∫
d3r′′

{
[Jp(r)]0n[h1(r

′, t)]nm[h1(r
′′, t)]m0

(2h̄ω − En0 + iη)(h̄ω − Em0 + iη)

− [h1(r
′, t)]0n[Jp(r)]nm[h1(r

′′, t)]m0

(h̄ω + En0 + iη)(h̄ω − Em0 + iη)

+ [h1(r
′′, t)]0n[h1(r

′, t)]nm[Jp(r)]m0

(2h̄ω + En0 + iη)(h̄ω + Em0 + iη)

}
(9)
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whereη is the line width. We have defined

Jp(r) ≡ e

2m
{ψ̂†

(r)pψ̂(r) − [pψ̂†
(r)]ψ̂(r)} (10)

and

JA(r) ≡ − e2

m2c
ψ̂†

(r)A(r, t)ψ̂(r). (11)

The above expressions can be simplified if we consider only the vertical transition—i.e.,
neglect the momentum of light because it is much smaller than that of electrons. As a
result,

J1(r, t) = e3

m3c2

∑
n

∫
d3r′

{
[ψ̂†

(r′)A(r′, t) · p′ψ̂(r′)]0n[ψ̂†
(r)A(r, t)ψ̂(r)]n0

h̄ω + En0 + iη

− [ψ̂†
(r)A(r, t)ψ̂(r)]0n[ψ̂†

(r′)A(r′, t) · p′ψ̂(r′)]n0

h̄ω − En0 + iη

}
(12)

J2(r, t) = − e3

2m3c2

∑
n

∫
d3r′ A2(r′, t)

{
[ψ̂†

(r′)ψ̂(r′)]0n[ψ̂†
(r)pψ̂(r)]n0

2h̄ω + En0 + iη

− [ψ̂†
(r)pψ̂(r)]0n[ψ̂†

(r′)ψ̂(r′)]n0

2h̄ω − En0 + iη

}
(13)

and

J3(r, t) = − e3

m3c2

∑
m,n,i,j

∫
d3r′

∫
d3r′′Ai(r

′, t)Aj (r
′′, t)

×
{

[ψ̂†
(r)pψ̂(r)]0n[ψ̂†

(r′)p′
iψ̂(r′)]nm[ψ̂†

(r′′)p′′
j ψ̂(r′′)]m0

(2h̄ω − En0 + iη)(h̄ω − Em0 + iη)

− [ψ̂†
(r′)p′

iψ̂(r′)]0n[ψ̂†
(r)pψ̂(r)]nm[ψ̂†

(r′′)p′′
j ψ̂(r′′)]m0

(h̄ω + En0 + iη)(h̄ω − Em0 + iη)

+ [ψ̂†
(r′′)p′′

j ψ̂(r′′)]0n[ψ̂†
(r′)p′

iψ̂(r′)]nm[ψ̂†
(r)pψ̂(r)]m0

(2h̄ω + En0 + iη)(h̄ω + Em0 + iη)

}
. (14)

We have to sum over all of the intermediate states forJ3(r, t). This can be done by
utilizing the Green’s function

G(r, r′; E) =
∑

n

ψn(r)ψ∗
n(r

′)
E − En

. (15)

Assuming the ground-state wave function and energy to beψ∗
0(r) andE0, we have

J3(r, t) = −e3

m3c2

∑
i,j

∫
d3r′

∫
d3r′′ Ai(r

′, t)Aj (r
′′, t)

× [ψ∗
0(r)pG(r, r′; 2h̄ω + E0 + iη)p′

iG(r′, r′′; h̄ω + E0 + iη)p′′
j ψ∗

0(r
′′)

+ ψ∗
0(r

′)p′
iG(r′, r; −h̄ω + E0 − iη)pG(r, r′′; h̄ω + E0 + iη)p′′

j ψ∗
0(r

′′)
+ ψ∗

0(r
′′)p′′

j G(r′′, r′; −2h̄ω + E0 − iη)p′
iG(r′, r; −h̄ω + E0 − iη)pψ0(r)].

(16)

Equations (15) and (16) combined form the basis of our later calculation.
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Table 1. The parameters of the JJJ potential [10]. Onlyz0 is adjusted to make the energies fit
with the experimental data.

State parity U0 (Ryd) λ (au) z0 (au) Energy(eV)

Odd 1.03 0.96 1.78 −0.1
Even 1.03 0.96 2.63 1.66

3. Surface states

The formalism in the last section will now be applied to the surface-state-induced second-
harmonic generation. There are well-characterized surface states on most noble-metal
surfaces. So it is convenient to take them as examples and compare the results with
experiments. To make calculation simple we use the two-band model. It has been shown
that the two-band model is able to provide a good description of surface and image states
on noble-metal surfaces [10, 15]. A more sophisticated model will incorporate more plane
waves for the wave function and more Fourier components of the crystal potential. However,
the procedure of the calculation remains the same. Furthermore, since we intended to study
the high-symmetry plane, the components of the large-crystal reciprocal lattice are less
important. The two-band model, though less accurate, retains the main features of this
problem. On the silver (110) surface, there are two surface states in the L gap at theȲ
point. The one with lower energy is of odd parity in they-direction and the other is of even
parity. The lower state is about 0.1 eV below the Fermi level and therefore is occupied. We
set the surface normal to be thez-direction and (001) to be they-direction. The reciprocal-
lattice vectorG is equal to(2π/a)(111) wherea is the lattice constant. The wave functions
and their explicit forms inside the crystal are

ψ1(r) =
√

2

A sin(Gyy/2)Z1(z) =
√

2

A sin(Gyy/2)cz1eq1z sin(Gzz/2 + δ1) z < 0

(17)

and

ψ2(r) =
√

2

A cos(Gyy/2)Z2(z) =
√

2

A cos(Gyy/2)cz2eq2z cos(Gzz/2 + δ2) z < 0

(18)

whereA is the surface area of the system andczi is the normalization constant in thez-
direction. The relation between the energies,qj and δj , will be determined by the secular
equation∣∣∣∣ [(Gz + 2iqj )

2 + 4G2
y ]/8m∗ − Ej V

V [(Gz − 2iqj )
2 + 4G2

y ]/8m∗ − Ej

∣∣∣∣ = 0 (19)

whereV is the lattice potential andm∗ is the effective mass. These were given in reference
[16]. Following Smith [10], the wave functions outside of the crystal are solved for
numerically using the JJJ potential [17] in which the effects of both crystal structure and
image potential are included. We require the wave functions inside and outside to match—
i.e., wave functions and their derivatives should be continuous—and thus determine the
energies. We adjusted the potential parameterz0 to make the resulting energies fit with
experimental data. The result and also the parameters are listed in table 1. One might notice
that thez0 are different for even and odd states. This is not necessarily a deficiency of the
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two-band model. The even wave functions have most amplitude concentrated on atomic
sites while the odd ones concentrate in interstitial space. This could result in different
effective potentials outside.

Similarly we can calculate the Green’s function with the two-band model. This method
was evolved from Mahan’s theory of photoemission [9] where plane waves were used. Now
the energy gap has to be taken into account. Since we have essentially a one-dimensional
potential, we can reduce the Green’s function from a three-dimensional one to a one-
dimensional one. The two-band model gives a trigonometric form to the wave function in
the direction parallel to the surface, as shown in equations (20) and (21). The fact that only
the vertical transition is important further simplifies our task. So we have

G(r, r′; E) =
√

2

A sin(Gyy/2)gs(z, z
′; E) +

√
2 cos(Gy/2y)gc(z, z

′; E) (20)

wheregs(c)(z, z
′; E) is the one-dimensional Green’s function. It has the form

gs(c)(z, z
′; E) = [θ(z − z′)9+(z; E)9−(z′; E) + θ(z′ − z)9−(z; E)9+(z′; E)]/W(E)

(21)

where W(E) is the Wronskian and9+(−)(z; E) is the solution of the one-dimensional
Schr̈odinger equation satisfying the boundary condition forz → +∞ (−∞). In the two-
band model (the upper sign is forgc(z, z

′; E) and the lower sign forgs(z, z
′; E))

9−(z; E) = e−ikz ± c1ei(Gz−k)z z < 0 (22)

where

k = p + iq (23)

and the relation betweenc1 andE can be obtained by solving the secular equation∣∣∣∣ (4k2 + G2
y)/8m∗ − E V

V [4(Gz − k)2 + G2
y ]/8m∗ − E

∣∣∣∣ = 0. (24)

For z > 0, 9−(z; E) is solved for numerically using the JJJ potential. However, atz = 0,
the wave function outside should match with that in equation (22). As for9+(z; E), it is
also solved for numerically outside with the requirement that it vanishes asz → ∞. Inside
the crystal (similarly, the upper sign is forgc(z, z

′; E) and the lower sign forgs(z, z
′; E))

9+(z; E) = eikz ± c2ei(k−Gz)z + β9−(z; E) z < 0 (25)

wherek andc2 are related toE by equation (24). Coefficientβ enables9+(z; E) inside to
match with that outside.

We would consider the second-harmonic generation resonant withψ1(r) andψ2(r), i.e.,
h̄ω ' E2 − E1. Only the resonance terms were taken into account. Going back to the last
section, we found that

J1 = J2 = 0 (26)

in the case of vertical transition and resonance. This is because in equations (12) and (13),
the intermediate state will beψ2(r), which has parity different from that ofψ1(r). For the
second-harmonic generation,J1 andJ2 should be constant on the atomic scale because we
are working in the long-wavelength region. The product ofψ1(r) andψ2(r) which appears
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in J1 and J2 has a wavelength of a lattice constant and thus cannot produce the second
harmonics that we want. Substituting equations (17), (20), and (21) into (16), we get

J3,y(r, t) = ie3G2
yA0,yA0,zD

4Am3c2
e−2iωt

∫
dz′

∫
dz′′

[
Z1(z)gc(z, z

′; 2h̄ω + E1 + iη)

× d

dz′gc(z
′, z′′; h̄ω + E1 + iη)Z1(z

′′)

+ Z1(z
′)

d

dz′gs(z
′, z; −h̄ω + E1 − iη)gc(z, z

′′; h̄ω + E1 + iη)Z1(z
′′)

]
(27)

and

J3,z(r, t) = ie3G2
yA

2
0,yD

4Am3c2
e−2iωt

∫
dz′

∫
dz′′

[
Z1(z)

× d

dz
gs(z, z

′; 2h̄ω + E1 + iη)gc(z
′, z′′; h̄ω + E1 + iη)Z1(z

′′)

+ Z1(z
′)gc(z

′, z; −h̄ω + E1 − iη)
d

dz
gc(z, z

′′; h̄ω + E1 + iη)Z1(z)

]
(28)

where

D = m

πh̄2 × 7.35× 10−3 Ryd. (29)

In fact D is the product of the surface density of statesm/πh̄2 and the energy (in atomic
units) by which the lower surface state is below the Fermi level. At this point it is appropriate
to discuss the effect of the effective mass. It is not important because each Green’s function
provides one factor of the effective mass. Together withD, they completely cancelled the
effective mass to the third power in the denominator of the current density. Now the current
density can readily be evaluated after evaluating9±(r).

Figure 1. ∂24 (the solid line) and∂32 (the dashed line) as functions of the fundamental frequency.
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4. Reflectance

What is usually measured is the reflection intensity of the second-harmonic generation. In
principle, this can be done with Maxwell equations. To simplify the matter, we assume that
the nonlinear current and hence the polarization concentrates at the surface [11]:

P (r, t) = IIδ(z)e2i(u·r−ωt) (30)

where

IIx = 2∂15Ein,xEin,z (31)

IIy = 2∂24Ein,yEin,z (32)

and

IIz = ∂31E
2
in,x + ∂32E

2
y + ∂33E

2
in,z (33)

with

Ein = iωA0/c (34)

for a fcc (110) crystal surface. In view of the relationJ = Ṗ , equations (26)–(28), we
found

∂15 = ∂31 = ∂33 = 0 (35)

∂24 = e3G2
yD

16m3ω3

∫
dz

∫
dz′

∫
dz′′

[
Z1(z)gc(z, z

′; 2h̄ω + E1 + iη)

× d

dz′gc(z
′, z′′; h̄ω + E1 + iη)Z1(z

′′)

+ Z1(z
′)

d

dz′gs(z
′, z; −h̄ω + E1 − iη)gc(z, z

′′; h̄ω + E1 + iη)Z1(z
′′)

]
(36)

and

∂32 = e3G2
yD

8m3ω3

∫
dz

∫
dz′

∫
dz′′

[
Z1(z)

× d

dz
gs(z, z

′; 2h̄ω + E1 + iη)gc(z
′, z′′; h̄ω + E1 + iη)Z1(z

′′)

+ Z1(z
′)gc(z

′, z; −h̄ω + E1 − iη)
d

dz
gc(z, z

′′; h̄ω + E1 + iη)Z1(z)

]
. (37)

By taking η to be 0.1 eV which seems to be close to the experimental resolution, we
calculated∂24 and∂32. These are plotted in figure 1 as functions ofω. The peak at 1.75 eV
is the resonance of the surface-state–surface-state transition while the structure at 2 eV
indicates the onset of the upper band edge. Notice that∂32 is greater than∂24. The reason
for this is that the upper-band wave function has az-dependence very different from that
of the lower-band wave function. The lower surface state and its wave function are quite
close to the lower band (q1 in equation (17) is very small). InJy and hence∂24, ψ1 coupled
with the upper band throughgc. Therefore, the matrix is small in magnitude. InJz and∂32

there is az-derivative operator in between. This results in a largerJz.
It is worth comparing the results with those of the jellium model. According to Rudnick

and Stern [18]

Py(x) = ibe3n

m2ω4
Ein,y(x)Ein,z (38)
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and

Pz = iae3n

2m2ω4
E2

in,z (39)

wheren is the electron density anda andb are parameters (or slowly varying functions of
frequency). We immediately see that∂24 and∂32 have different frequency dependences from
those in the jellium model. This is because those from reference [18] were derived in the
high-frequency limit. In that case,J3(r, t) is negligible compared toJ1(r, t) andJ2(r, t)

and equations (38) and (39) can be derived from equations (12) and (13). On the other
hand,∂24 and∂32 come fromJ3(r, t). Nevertheless, it is important to see how the second-
harmonic generation from resonance is compared with that from jellium in magnitude—that
is to say, if it is detectable in experiments. From our calculation we found that

m2ω4

e3n
|∂24|:|b| ' 10:|b| (40)

at the peak position. Since|b| is of the order of unity, the resonance signal is clearly visible.

Figure 2. The reflection intensity of the second harmonic induced by p-polarized incident light.
The intensity of the p-polarized second harmonics is shown by the solid line and that of the
s-polarized light multiplied by 100 is shown as the dashed line.

Using the boundary conditions of electric and magnetic fields accounting for surface
current and polarization, or following Sipeet al [11], for s-polarized incident light, there
is no reflected s-polarized second-harmonic light. For the reflected p-polarized second-
harmonic light

|E| = 8π iε(2ω)κ||ω ∂32

c[κ0ε(2ω) + κ2]
E2

in sin2 φ (41)

whereφ is the angle between the incident plane and they-direction. For p-polarized incident
light, the reflected s-polarized light has

|E| = −16π iκ||κ1 ∂24

ε(ω)(κ0 + κ2)
E2

in sinφ cosφ (42)
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Figure 3. The reflection intensity of the p-
polarized second harmonics induced by s-
polarized incident light.

and the p-polarized light has

|E| = 8π icκ||[κ2
1ε(2ω) ∂32 − 2κ2κ1 ∂24]

ωε(ω)[κ0ε(2ω) + κ2]
E2

in cos2 φ. (43)

Here, we defined

κ|| = ω

c
sinθ (44)

κ0 =
√

ω2/c2 − κ2
|| (45)

κ1 =
√

ω2ε(ω)/c2 − κ2
|| (46)

κ2 =
√

ω2ε(2ω)/c2 − κ2
|| (47)

where θ is the angle of incidence andε(ω) is the dielectric function. To calculate the
reflection intensity, we need to know the dielectric function. We fitted the experimental
data of Johnson and Christy [19] with a two-parameter function. The dielectric function
consists of a Drude part and an interband transition part. The imaginary part of the latter is
of the form [20]ξθ(ω−ed)

√
ω − ed/ω

2. The real part was found from the Kramers–Kronig
relation. Thus

ε(ω) = 1 − ω2
p

ω(ω + i/τ)
− ξ(2

√
ed − √

ed + ω − √
ed − ω)

ω2
. (48)

For τ and the optical effective mass, we used the values of reference [17] wherem∗ is equal
to the free-electron mass and 1/τ = 31× 1015 s−1. The two parameters areξ = 18 eV−3/2

and ed = 3.45 eV. This simple form gives a fairly good fit and reproduces all of the
important features. With this we calculated the reflection intensity of the second harmonics.
In figure 2, the intensity of p-polarized light and s-polarized light times 100 induced by
p-polarized incident light are shown as solid and dashed curves respectively. In figure 3,
the intensity of p-polarized light induced by s-polarized incident light is plotted. The unit
of intensity is arbitrary but it is the same in both figures. We can see that the intensity of
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p-polarized light is higher than that of s-polarized light. This is mainly because∂32 is larger
than ∂24 in magnitude. The fact thatε(ω) appears in the denominator of equation (42)
also plays a role. The main peaks at 1.75 eV in both figures come from the resonance
between two surface states. The structures at 2 eV have the same origin as that in figure 1.
The dips at 1.7 eV show the dielectric effect. It comes fromε(2ω) in the numerators of
equations (41) and (43). At 2ω = ed , it approaches zero. But experimentally it might be
difficult to detect because the dip is very narrow.

The experiment of Urbachet al [2] provides a direct comparison. They measured the
second-harmonic intensity in the cases of the incident plane parallel and normal to they-
direction. They found no s-polarized second-harmonic light. This is expected becauseφ

in equation (42) is either 0 orπ/2. For p-polarized second-harmonic light, there is the
main peak at 1.75 eV and some structure at around 2 eV. Both were predicted by our
theory. Our results do not have a peak at 2 eV as shown in their figure 1(a) with squares
because we did not take into account the surface-state–bulk-band transition. The Green’s
functions were calculated in the presence of the JJJ surface potential. The relative intensity
needs more study. In reference [2] the ratio of the second-harmonic signals produced by
p-polarized incident light to those produced by the s-polarized light is about 6 while in our
results it is about 1. We agree that most of the contribution comes from∂32, but we attribute
the discrepancy in ratio to the enhancement of the electric field normal to the surface of
the fundamental wave by conduction electrons. For the same incident light intensity the
p-polarized fundamental wave inside the crystal has a much stronger electric field [5–8]
than that of the s-polarized wave. Our theory calculated the second-harmonic current based
on the electric field inside the crystal. To convert it to the electric field of the incident light,
∂24 should be multiplied by an enhancement factor. The calculation of this factor is beyond
the scope of the present work.

5. Conclusion

We have developed a simple and intuitive formalism for analysing the second-harmonic
generation induced by surface states. The energy gap and all of the intermediate states are
taken into account properly. It is applied to the silver (110) surface. The results fit the
experiments reasonably well. This method can easily be generalized to incorporated more
bands. It also provides a basis on which to consider many-body effects such as screening
and surface plasmons. We have calculated∂32 and∂24. Both are are greater in magnitude
by at least a factor of 10 than the output from jellium at resonance. Hence, the signal is
clearly observable. Comparing them with each other,∂32 is at least four times greater than
∂24. The ratio can be as large as 10 at resonance. Experimentally one can identify the
source of the second-harmonic generation (from either∂32 or ∂24) because∂32 is coupled
to E2

y and∂24 is coupled toEyEz. However,Ez is enhanced inside the metal. Though we
did not calculate the enhancement factor, we can estimate it from experimental data. For
the second-harmonic generation near resonance, the dielectric effect is dominated by the
system response, at least for experiments. In figures 2 and 3, the main features come from
the response. The dips given by the dielectric function were not detected by experiments.
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[4] Lüpke G, Bottomley D J and van Driel H M 1994 Phys. Rev.B 49 17 303
[5] Schaich W L and Liebsch A 1988Phys. Rev.B 37 6187
[6] Weber M and Liebsch A 1987Phys. Rev.B 35 7411
[7] Liebsch A 1988Phys. Rev. Lett.61 1233
[8] Liebsch A and Schaich W L 1989Phys. Rev.B 40 5401
[9] Mahan G D 1970Phys. Rev.B 2 4334

[10] Smith N V 1985Phys. Rev.B 32 3549
[11] Sipe J E, Moss D J and van Driel H M 1987 Phys. Rev.B 35 1129
[12] Bower J R 1976Phys. Rev.B 14 2427
[13] Hu C D 1989Phys. Rev.B 40 7520
[14] Hu C D 1993Phys. Rev.B 47 7525
[15] See, for example,

Chen C T and Smith N V 1987Phys. Rev.B 35 5407
Kevan S D 1986Phys. Rev.B 34 6713
Kevan S D, Stoffel N G and Smith N V 1985Phys. Rev.B 31 3348

[16] Smith N V, Chen C T and Weinert M 1989Phys. Rev.B 40 7565
[17] Jones R O, Jennings P J and Jepsen O J 1984Phys. Rev.B 29 6474
[18] Rudnick J and Stern E A 1971Phys. Rev.B 4 4274
[19] Johnson P B and Christy R W 1972Phys. Rev.B 6 4370
[20] Harbeke G 1972Optical Properties of Solidsed F Abel̀es (Amsterdam: North-Holland) ch 2

Abelès F 1972Optical Properties of Solidsed F Abel̀es (Amsterdam: North-Holland) ch 3


